Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Lancet ; 401(10376): 557-567, 2023 02 18.
Article in English | MEDLINE | ID: covidwho-2211739

ABSTRACT

BACKGROUND: Metabolic acidosis is common in kidney transplant recipients and is associated with declining graft function. Sodium bicarbonate treatment effectively corrects metabolic acidosis, but no prospective studies have examined its effect on graft function. Therefore, we aimed to test whether sodium bicarbonate treatment would preserve graft function and slow the progression of estimated glomerular filtration rate (GFR) decline in kidney transplant recipients. METHODS: The Preserve-Transplant Study was a multicentre, randomised, single-blind, placebo-controlled, phase 3 trial at three University Hospitals in Switzerland (Zurich, Bern, and Geneva), which recruited adult (aged ≥18 years) male and female long-term kidney transplant recipients if they had undergone transplantation more than 1 year ago. Key inclusion criteria were an estimated GFR between 15 mL/min per 1·73 m2 and 89 mL/min per 1·73 m2, stable allograft function in the last 6 months before study inclusion (<15% change in serum creatinine), and a serum bicarbonate of 22 mmol/L or less. We randomly assigned patients (1:1) to either oral sodium bicarbonate 1·5-4·5 g per day or matching placebo using web-based data management software. Randomisation was stratified by study centre and gender using a permuted block design to guarantee balanced allocation. We did multi-block randomisation with variable block sizes of two and four. Treatment duration was 2 years. Acid-resistant soft gelatine capsules of 500 mg sodium bicarbonate or matching 500 mg placebo capsules were given at an initial dose of 500 mg (if bodyweight was <70 kg) or 1000 mg (if bodyweight was ≥70 kg) three times daily. The primary endpoint was the estimated GFR slope over the 24-month treatment phase. The primary efficacy analyses were applied to a modified intention-to-treat population that comprised all randomly assigned participants who had a baseline visit. The safety population comprised all participants who received at least one dose of study drug. The trial is registered with ClinicalTrials.gov, NCT03102996. FINDINGS: Between June 12, 2017, and July 10, 2019, 1114 kidney transplant recipients with metabolic acidosis were assessed for trial eligibility. 872 patients were excluded and 242 were randomly assigned to the study groups (122 [50%] to the placebo group and 120 [50%] to the sodium bicarbonate group). After secondary exclusion of two patients, 240 patients were included in the intention-to-treat analysis. The calculated yearly estimated GFR slopes over the 2-year treatment period were a median -0·722 mL/min per 1·73 m2 (IQR -4·081 to 1·440) and mean -1·862 mL/min per 1·73 m2 (SD 6·344) per year in the placebo group versus median -1·413 mL/min per 1·73 m2 (IQR -4·503 to 1·139) and mean -1·830 mL/min per 1·73 m2 (SD 6·233) per year in the sodium bicarbonate group (Wilcoxon rank sum test p=0·51; Welch t-test p=0·97). The mean difference was 0·032 mL/min per 1·73 m2 per year (95% CI -1·644 to 1·707). There were no significant differences in estimated GFR slopes in a subgroup analysis and a sensitivity analysis confirmed the primary analysis. Although the estimated GFR slope did not show a significant difference between the treatment groups, treatment with sodium bicarbonate effectively corrected metabolic acidosis by increasing serum bicarbonate from 21·3 mmol/L (SD 2·6) to 23·0 mmol/L (2·7) and blood pH from 7·37 (SD 0·06) to 7·39 (0·04) over the 2-year treatment period. Adverse events and serious adverse events were similar in both groups. Three study participants died. In the placebo group, one (1%) patient died from acute respiratory distress syndrome due to SARS-CoV-2 and one (1%) from cardiac arrest after severe dehydration following diarrhoea with hypotension, acute kidney injury, and metabolic acidosis. In the sodium bicarbonate group, one (1%) patient had sudden cardiac death. INTERPRETATION: In adult kidney transplant recipients, correction of metabolic acidosis by treatment with sodium bicarbonate over 2 years did not affect the decline in estimated GFR. Thus, treatment with sodium bicarbonate should not be generally recommended to preserve estimated GFR (a surrogate marker for graft function) in kidney transplant recipients with chronic kidney disease who have metabolic acidosis. FUNDING: Swiss National Science Foundation.


Subject(s)
Acidosis , COVID-19 , Kidney Transplantation , Adult , Humans , Male , Female , Adolescent , Sodium Bicarbonate/therapeutic use , Bicarbonates/therapeutic use , Switzerland , Kidney Transplantation/adverse effects , Single-Blind Method , Double-Blind Method , SARS-CoV-2 , Acidosis/drug therapy , Acidosis/etiology , Treatment Outcome
2.
Am J Med Genet A ; 185(6): 1854-1857, 2021 06.
Article in English | MEDLINE | ID: covidwho-1121487

ABSTRACT

The COVID-19 pandemic has affected the health and healthcare of individuals of all ages worldwide. There have been multiple reports and reviews documenting a milder effect and decreased morbidity and mortality in the pediatric population, but there have only been a small number of reports discussing the SARS-CoV-2 infection in the setting of an inborn error of metabolism (IEM). Here, we report two patients with underlying metabolic disorders, propionic acidemia and glutaric aciduria type 1, and discuss their clinical presentation, as well as their infectious and metabolic management. Our report demonstrates that individuals with an underlying IEM are at risk of metabolic decompensation in the setting of a COVID-19 infection. The SARS-CoV-2 virus does not appear to cause a more severe metabolic deterioration than is typical.


Subject(s)
Amino Acid Metabolism, Inborn Errors/complications , Brain Diseases, Metabolic/complications , COVID-19/complications , Glutaryl-CoA Dehydrogenase/deficiency , Propionic Acidemia/complications , SARS-CoV-2 , Acidosis/etiology , Acidosis/therapy , Acidosis, Lactic/etiology , Blood Component Transfusion , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Combined Modality Therapy , Dietary Proteins/administration & dosage , Disease Management , Disease Susceptibility , Energy Intake , Enteral Nutrition , Female , Fluid Therapy , Glucose/administration & dosage , Glucose/adverse effects , Humans , Hyperammonemia/etiology , Hyperammonemia/therapy , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Infant , Insulin/therapeutic use , Intensive Care Units, Pediatric , Oxygen Inhalation Therapy , Pancytopenia/etiology , Pancytopenia/therapy , Renal Dialysis , Systemic Inflammatory Response Syndrome/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL